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Published online: 29 July 2003 – c© Società Italiana di Fisica / Springer-Verlag 2003
Communicated by G. Orlandini

Abstract. The double-beta decay matrix elements and half-lives for 106Cd are computed with the second
quasi random phase approximation (SQRPA) method and using two single-particle (s.p.) bases. For the
neutrino-emitting decay modes the two-positron emission (β+β+), the positron emission/electron capture
(β+/EC) and the double electron capture (EC/EC) processes are treated. It was found that the nuclear
matrix elements (NME) display a strong dependence on the strength of the particle-particle interaction and
an important contribution to the decay amplitude is coming from the 1+ ground state of the intermediate
nucleus 106Ag. Their values depend weakly on the s.p. basis used. For both bases the deviations from the
Ikeda sum rule are only within 2-3%. We got half-lives for the β+/EC of the order of ∼ 1021 y which
is not far from the actual experimental limits. For the neutrinoless β+β+ and β+/EC decay modes the
NME relevant both for the mass mechanism and the right-handed (RH) currents were calculated. They
are found to be slightly larger than those obtained in our previous calculations (M. Hirsch, K. Muto, T.
Oda, H.V. Klapdor-Kleingrothaus, Z. Phys. A 334, 151 (1994)). Using the value of the neutrino mass
parameter extracted from the recently reported first experimental evidence of the neutrinoless decay mode
(i.e. 0.39 eV) (H.V. Klapdor-Kleingrothaus, A. Dietz, H.I. Harney, I.V. Krivosheina, hep-ph/0201231; Mod.
Phys. Lett. A 16, 2409 (2001); H.V. Klapdor-Kleingrothaus, A. Dietz, I.V. Krivosheina, Part. Nucl. Lett.
110, 57 (2002); Found. Phys. 32, 1181 (2002)), we got half-lives of ∼ 1028 y and 1027 y, for the 0νβ+β+

and 0νβ+/EC processes, respectively. An experimental investigation of these decays could be useful for
testing the importance of the right-handed current mechanism to the occurrence of neutrinoless ββ decay.

PACS. 21.60.Jz Hartree-Fock and random-phase approximations – 23.40.Hc Relation with nuclear matrix
elements and nuclear structure – 23.40.Bw Weak-interaction and lepton (including neutrino) aspects

1 Introduction

The double-beta (ββ) decay process is still receiving much
attention since its study could provide us with essential
information about the neutrino properties, structure of
the weak interaction as well as about physics beyond the
Standard Model (SM) [1]. One of the challenging prob-
lems related to this process is the accurate calculation
of the nuclear matrix elements (NME) which appear in
the half-lives formulae of the different ββ decay modes.
The most extensively used approach for their computa-
tion was the proton-neutron quasi random phase approx-
imation (pnQRPA), since with this method one could re-
produce the experimental half-lives of the two-neutrino
double-beta (2νββ) decay mode for a large number of
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nuclei. However, calculated with this method the NME
manifest a large sensitivity to the renormalization of the
particle-particle strength in the 1+ channel (gpp). To over-
come this drawback, several improvements of pnQRPA
have been tried. For the whole history of these develop-
ments and an up-to-date situation of the calculations we
suggest the reader to consult some comprehensive reviews
like [2–6,1].

The most successful developments in getting more sta-
ble results for the NME have been proved to be the exten-
sions of the pnQRPA method beyond the basic approxi-
mation that it assumes, namely the quasi boson approxi-
mation (QBA). On this line two different approaches have
been developed. First, the idea that particle-like corre-
lations at the RPA level should also contribute, besides
the particle-unlike ones, to the ββ decay process was ex-
ploited in [7]. In those references the first-order corrections
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beyond the QBA have been taken into account by a boson
expansion of the quasiparticle pair operators which are in-
volved in the pnQRPA formalism. Several years later, the
idea of restoring (partially) the Pauli exclusion principle
which is violated within pnQRPA, leads to the renormal-
ization pnQRPA (RQRPA) approach, where higher-order
corrections to pnQRPA have been introduced by taking
into account in an approximative way the next terms in
the boson commutator relations of the pair quasiparticle
operators [8].

With the pnQRPA method and its extensions a lot
of calculations of the NME for β−β− decay have been
performed, including two- and zero-neutrino modes and
transitions to ground and excited final states [9–25]. By
contrast, the β+β+, β+/EC and the EC/EC decay pro-
cesses have received much less attention. This could be ex-
plained by the relatively larger available kinetic energies
of several nuclei which undergo a β−β− decay, and by the
Coulomb attraction between the outgoing electrons and
nucleus which favour shorter half-lives for this decay pro-
cess and makes it experimentally more attractive. This is
why many set-ups for measuring β−β− decay have been
developed and the most stringent half-lives and neutrino
mass limits come from the 0νβ−β− measurements.

However, the β+-type decays represent another chal-
lenge for the calculation of the nuclear-structure part of
the weak-interaction processes. In the recent past, the in-
terest for these decays increased due to some progress in
the experimental set-ups. On the other hand, there are re-
cent evaluations of NME and half-lives for these modes [8,
26–29]. The authors of those references have used the
pnQRPA and RQRPA methods and found values of half-
lives which could be accessible in the near future for ex-
periments. A common feature of those calculations is that
the NME are highly dependent on the model parameters,
which affects the accuracy of the calculations. This fea-
ture is particular true in the case of 106Cd. This is why
it is worthwhile to perform calculations with different ap-
proaches.

In this paper we calculate the NME and half-lives
for the two-neutrino β+β+, β+/EC and EC/EC and for
neutrinoless β+β+ and β+/EC decay processes with the
SQRPA method in the case of 106Cd. This method was re-
cently used extensively in β−β− calculations [23–25], but
is used here for the first time for β+-type decay modes.
Our calculation is also motivated by the recent experimen-
tal investigations of this isotope [29–31], where limits of
half-lives of the order of 1019–1020 y were reached.

Our goal is to study the suppression of the NME and
their dependence on the model parameters and on the size
of the s.p. model space used. On the other hand, in ref. [28]
it was shown that with observation of the 0νββ mode,
the study of positron-emitting decay modes might decide
which mechanism would give the main contribution to this
process: the mass mechanism or the existence of right-
handed (RH) weak currents. In this respect, it would be of
interest to see which coefficients involved in the formulae
for the half-lives of these processes are more important,
and this is another goal of our work.

The paper is organized as follows: in sect. 2 we give
details on the formalism we use for computing the 2ν and
0ν NME and half-lives. In sect. 3 we present the numerical
calculations and discussions of the results and in sect. 4 we
end up with conclusions. In appendix A we give detailed
expressions of some quantities used in our calculations.

2 Formalism

We give in this section the relevent formulae used in the
calculations. In the SQRPA the intermediate odd-odd nu-
cleus is described by states of one- and two-boson type
which are obtained by the action of the proton-neutron
(pn) and proton-proton (pp) and neutron-neutron (nn)
QRPA phonon operators onto the vacua of the initial (i)
and final (f) nuclei participating in the ββ decay:

Γ+
1µ(k)|0〉i,f , ;

[
Γ+

1 (k1)Γ+
2 (k2)

]
1µ

|0〉i,f . (2.1)

The Γ †-operators are defined as follows:

Γ †
1µ(k) =

∑
l=(jp,jn)

[
X1

k(l)A
+
1µ(l) + Y 1

k (l)Ã1µ(l)
]
,

Γ †
2µ(k

′) =
∑

l′=(jp,j′p;jn,j′n)

[
X2

k′(l′)A+
2µ(l

′) + Y 2
k′(l′)Ã2µ(l′)

]
,

(2.2)

such that

ΓJµ(k)|0〉i,f = 0 , J = 1, 2 .

X and Y are the forward- and backward-going QRPA am-
plitudes labeled with the indice (1) for the pn mode and
indice (2) for the pp and nn modes; l ≡ (p, n) denotes
a pn pair, l′ ≡ (p, p), (n, n) denotes pp or nn pairs and
k, k′ label the positive solutions of the pnQRPA, QRPA
equations, respectively.

|(1k12k2)〉 in (2.1) are corrections to the QRPA 1+

wave functions built with both dipole (pn) and quadrupole
(pp and nn) operators and their physical meanings that
the 1+ states in the intermediate odd-odd nucleus can also
be built from excited 2+ states of the parent nucleus.

The A, A† are the bi-fermion quasiparticle operators
coupled to angular momentum J = 1, 2 and projection µ:

A†
Jµ(l) =

∑
mp,mn

CjpjnJ
mpmnµa

†
jpmp

a†jnmn
;

ÃJµ = (−)J−µAJ,−µ . (2.3)

In the QBA the operators A†, A as well as the phonon
operators Γ †, Γ fulfill the boson-type commutator rela-
tions.

In the formalism we also need the following bi-fermion
density-type operators:

B†
1µ(l) =

∑
mp,mn

C
jpjnJ
mp−mnµa

†
jpmp

ajnmn
(−)jn−mn ;

B̃1µ(l) = (−)1−µB1µ(l) . (2.4)
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MGT =
〈0i||β−||1k1〉〈1k1 |1k′

1
〉〈1k′

1
||β−||0f 〉

mec2 + Qββ/2 + ∆E1
+

〈0i||β−||(1k12k2)1〉〈(1k12k2)1|(1k′
1
2k′

2
)1〉〈(1k′

1
2k′

2
)1||β−||0f 〉

mec2 + Qββ/2 + ∆E2
(2.12)

In the particle representation the transition operators
β± are defined as follows:

β−
µ (l) =

∑
mpmn

〈jpmp|σµ|jnmn〉c†jpmp
cjnmn

;

β+
µ (l) = (−)µ (

β−
−µ(l)

)†
, (2.5)

where σµ denotes the µ-th spherical component of the
Pauli spin operator. Their expressions in the quasiparticle
representation read [5]

β−
µ (l) = θlA

†
1µ(l) + θ̄lÃ1µ(l) + ηlB

†
1µ(l) + η̄lB̃1µ(l) ,

β+
µ (l) = −

(
θ̄lA

†
1µ(l) + θlÃ1µ(l) + η̄lB

†
1µ(l) + ηlB̃1µ(l)

)
,

(2.6)

where the following notations are used:

θl =
ĵp√
3
〈jp||σ||jn〉UpVn ,

θ̄l =
ĵp√
3
〈jp||σ||jn〉UnVp; ĵ =

√
2j + 1 ;

ηl =
ĵp√
3
〈jp||σ||jn〉UpUn ,

η̄l =
ĵp√
3
〈jp||σ||jn〉VpVn . (2.7)

In the SQRPA method the higher-order corrections to
the pnQRPA are introduced by expanding the bi-fermion
operators A†, A, B†, B into a series of boson operators.
Up to two boson terms one gets [7]:

A†
1µ(l) =

∑
k

(
A(1,0)

k1
Γ+

1µ(k) + A(0,1)
k1

Γ̃+
1µ(k)

)
, (2.8)

B†
1µ(l) =

∑
k1k2

(
B (2,0)
k1k2

(l)[Γ †
1 (k1)Γ

†
2 (k2)]1µ

+B (0,2)
k1k2

(l)[Γ1(k1)Γ2(k2)]1µ
)

. (2.9)

The boson expansion coefficients A(1,0), A(0,1), B (2,0),
B (0,2) are determined so that eqs. (2.8), (2.9) are also valid
for the corresponding ME in the boson basis. Their expres-
sions are given in appendix A of ref. [7].

For consistency, using (2.8), (2.9), we also derived the
expressions of the β±-operators in the same order of ap-
proximation as the phonon operators. Their complete ex-
pressions can be found in ref. [7]. Further, one can cal-
culate the matrix elements of the single β±-operators be-
tween the states of our model space (2.1). We give here

that part of the expressions which contributes to the g.s.-
to-g.s. transitions:

〈0||β−||1k〉 =
(
Y 1
k (jpjn)θl −X1

k(jpjn)θ̄l
)
, (2.10a)

〈0||β+||1k〉 =
√
3

(
Y 1
k (jpjn)θ̄l −X1

k(jpjn)θl
)
, (2.10b)

〈0||β−||(1k12k2)1〉 = 2
√
15

(
Z112
p′pnX

2
k2
(jpjp′)Y 1

k1
(jp′jn)

+Z112
n′npY

2
k2
(jn′jn)X1

k1
(jpjn′

)
, (2.11a)

〈0||β+||(1k12k2)1〉 = 6
√
5

(
Z112
p′pnY

2
k2
(jpjp′)X1

k1
(jp′jn)

+Z112
n′npX

2
k2
(jn′jn)Y 1

k1
(jpjn′

)
, (2.11b)

where

Zabc
def = (−)d−fW (adbe; fc) .

We remark that the expressions (2.11a), (2.11b) rep-
resent the corrections within our formalism to the QRPA
usual expressions of the β± transition amplitudes.

For the β+β+ decay and 2νββ decay mode we obtain
for the Gamow-Teller matrix elements the following ex-
pression:

see eq. (2.12) above

with

∆E1 =
1
2

∑
α=i,f

(Eα
1 (k)− Eα

1 (1)) + Eexp
1

∆E2 =
1
2

∑
α=i,f

(Eα
1 (k1) + Eα

2 (k2)− Eα
1 (1)) + Eexp

1 ,

where Eα
1 (k) and Eα

2 (k) are the pnQRPA and QRPA en-
ergies and Eexp

1 are the first 1+ experimental energies in
the intermediate nucleus. The expressions of the over-
lap factors between the virtual intermediate states are
given in appendix A. Thus, in SQRPA the expression of
the NME for the two-neutrino decay mode contains, be-
sides the usual pnQRPA term (the first term in (2.12)), a
higher-order contribution in which two-body particle-like
correlations are also involved. This contribution is intro-
duced in a consistent way, namely it comes from both the
enlargement of our model space (from one- to two-boson
states) as compared with the pnQRPA model space and
the expressions of the β− transition operators (see also
eq. (3.7) of ref. [7]) which also contain terms beyond their
quasiparticle representation (2.6).
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The β+β+ half-lives expressions can be written as [28]
[
T 2ν,a

1/2

]−1

= F 2ν,a|M2ν
GT|2 , (2.13)

[
T 0ν,a

1/2

]−1

= Ca
mm

( 〈mν〉
me

)2

+ Ca
ηη〈η〉2 + Ca

λλ〈λ〉2

+Ca
mη

〈mν〉
me

〈η〉+ Ca
mλ

〈mν〉
me

〈λ〉+ Ca
ηλ〈η〉〈λ〉 ,

(2.14)

where a denotes the different β+β+, β+/EC and EC/EC
decay modes and 〈mν〉, 〈η〉 and 〈λ〉 are the effective neu-
trino mass and right-handed parameters. The coefficients
Cxy are defined as follows [10]:

Ca
mm = F a

1 (MGT −MF )
2
, (2.15a)

Ca
mλ = (MGT −MF ) (−SeM2−F a

3 +M1+F a
4 ) , (2.15b)

Ca
mη = (MGT −MF )

[
SeM2+F a

3 −M1−F a
4

−Sβ (MPF a
5 −SeMRF a

6 )
]
, (2.15c)

Ca
λλ = M2

2−F a
2 − 1

9
fe

(
2SeM1+M2−F a

3 −M2
1+F a

4

)
,

(2.15d)

Ca
ηη = M2

2+F a
2 − 1

9
fe

(
2SeM1−M2+F a

3 −M2
1−F a

4

)
−SeMPMRF a

7 +M2
PF a

8 +M2
RF a

9 , (2.15e)

Ca
λη = −2

(
M2+M2−F a

2 − 1
9
fe

[
Se (M1+M2+

+M1−M2−)F a
3 −M1+M1−F a

4

])
, (2.15f)

where

M1± = MGTq − 6MT ± 3MFq ,

M2± = MGTω ±MFω − 1
9
M1∓ . (2.16)

The definitions of the factors S and f , which distiguish
between the different decay modes, can be found in [28]
and the expressions of the nine neutrinoless matrix ele-
ments involved in (2.15) are given in appendix A. F 2ν,a

and F a
k are the phase space factors for the two-neutrino

and neutrinoless decay modes, respectively.
We also checked in our calculations the Ikeda sum rule

(ISR) [32] which must be fulfilled independently of the
nuclear model used:

S− − S+ = Σm|〈1+
m||β−

m||0+
g.s.〉|2

−|〈1+
m||β+

m||0+
g.s.〉|2 = 3(N − Z) . (2.17)

3 Numerical calculations and discussion of
results

We calculate the NME and the half-lives for the β+β+,
β+/EC and EC/EC processes for the neutrino-emitting
modes and for the β+β+ and β+/EC processes for the

neutrinoless decay modes. The process 0νEC/EC is not
yet settled theoretically, since this decay mode must be
accompanied by the emission of other particles for rea-
sons of energy momentum conservation. Consequently, its
decay rate has to be calculated at least by the third order
of perturbation theory and is expected to be at least by
four orders of magnitude smaller than the β+/EC decay
mode [33].

In the numerical calculations we follow a similar pro-
cedure that we used in our previous papers [24,25]. For
the Hilbert space used to generate the s.p. basis we made
two choices: i) the full (3–5) �ω oscillator shells plus the
orbital i13/2 and ii) the full (2–5) �ω oscillator shells plus
the orbital i13/2. From here on, we will call (s) the smaller
basis i) and (l) the larger basis ii) and these indices are
also used in tables and figures to distinguish between cal-
culations performed with the two bases. The s.p. ener-
gies were obtained by solving the Schrödinger equation
with a Coulomb-corrected Wood-Saxon potential with the
Bohr-Mottelson parametrization [34]. The λ-pole nucleon-
nucleon residual interactions were taken as Brueckner G-
matrix derived from the Bonn-A one-pion exchange poten-
tial. The quasiparticle energies and the BCS occupation
amplitudes were calculated by solving the HFB equations
with particle-like pairing interaction, separately for the
initial and final nuclei participating in the ββ decay, and
for the two basis sets. The renormalization constants for
the pp and nn pairing interactions were fixed by fitting
the experimental mass differences between even and odd
neighboring nuclei. In the second step of the calculation
we solved the pnQRPA and pp-nn QRPA equations for the
initial (106Cd) and final (106Pd) nuclei and for the two ba-
sis sets. In the pnQRPA numerical calculations the renor-
malization constants of the particle-hole residual interac-
tions were fixed as follows: for the 1+ channel it was fixed
so that to reproduce the Gamow-Teller Giant Resonance
in 106Ag. For the other multipolarities they were taken 1.0
for all the multipolarities except the 2+ one, where it was
taken 0.8, since for larger values the p-h interaction in this
channel is too strong, producing the collapse of the RPA
procedure. The strength of the particle-particle interac-
tion in the 1+ channel, gpp, was left as a free parameter
when we studied the dependence of the NME on this pa-
rameter. However, we fixed this constant from single β
decays, as is specified below, when we calculated the half-
lives. In the pp-nn QRPA procedures the renormalization
constants of the particle-hole interactions were fixed such
that the first 2+ states in 106Cd and 106Pd be reproduced,
while for the particle-particle interactions they were fixed
to unity.

3.1 Two-neutrino modes

We calculated first the M2ν
GT (eq. (2.12)) as a function of

gpp using the two s.p. bases. We remind that the expres-
sion (2.12) is derived for the β+β+ mode in the approxi-
mation that the four emitting leptons share equally their
kinetic energy. For the other two decay modes (i.e. β+/EC
and EC/EC) we have to adapt this approximation, since in
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Table 1. The matrix elements and the half-lives for the 2νEC/EC, 2νβ+/EC and 2νβ+β+ decay modes. The NME are
calculated with gpp = 0.9 and the half-lives with the phase space factors taken from table 2. The two sets of numbers of refs. [8]
and [30] represent calculations performed with two different s.p. bases, as is explained in those references. (l) and (s) denote the
calculations performed with the larger and smaller basis, respectively.

Exp QRPA [28] QRPA [30] RQRPA [8] SQRPA

M2ν
GT < 8.7 0.27 0.84 0.55 0.61 (l)

0.78 0.56 0.57 (s)

T 2ν
1/2(EC/EC) > 2.6 (17) [35] 8.7 (20) 9.0 (19) 2.1 (20) 2.6(20) (l)

1.0 (20) 2.0 (20) 1.96 (20) (s)

T 2ν
1/2(β

+/EC) > 6.6 (18) [30] 4.1 (21) 7.1 (20) 1.7 (20) 1.36 (21) (l)
> 4.1 (20) [31] 8.2 (20) 1.6 (21) 1.56 (21) (s)

T 2ν
1/2(β

+β+) > 9.2 (17) [29] 4.6 (26) 2.84 (25) 6.62 (25) 5.38 (25) (l)
3.3 (25) 6.39 (25) 6.16 (25) (s)

0 0.2 0.4 0.6 0.8 1 1.2
-0.1

0

0.2

0.4

0.6

0.8

1

Fig. 1. The M2ν matrix elements versus gpp calculated with

SQRPA methods for the β+/EC decay of 106Cd. The dashed
line and the solid line correspond to the calculations performed
with the large (l) and small (s) s.p. basis, respectively.

these cases we have only three and two free leptons, respec-
tively, in the final states. Thus, the denominator in (2.12)
for these decay modes was chosen as follows: for the mixed
mode, β+/EC, where we have only three free leptons in the
final states, we replaced the energy of a free electron by the
energy of a bound electron and then we assumed that the
available energy is shared equally between the three free
leptons. For the EC/EC mode we replaced the energies
of both free electrons by their bound energies in atomic
shells and we assumed that the two neutrinos share equally
the available energy. The denominator will be smaller and
thus the values of the NME are enhanced for these decay
modes. However, the large differences in their half-lives are
coming mainly from the very different phase space factors
and not from these differences in the NME.

Since the behaviour of the NME is similar for the three
processes investigated, we show in fig. 1 only the NME for
the β+/EC process as function of gpp. One can see that the
results display a strong dependence on this parameter: af-
ter an almost constant value up to gpp = 0.75, they drop
steeply and vanish around gpp = 1.05. By contrast, the
differences between the calculations performed with the

Table 2. The integrated phase space factors F a for the 2ν
and 0ν decay modes used in the calculation of the coefficients
Cxy. They are taken from ref. [33]. The kind of the decay mode
is indicated and the numbers in parenthesis represent powers
of ten. The value of the phase space factor for the 2νEC/EC
mode is 1.573(−20).

F a (y−1) β+β+ β+/EC

F1 2.589 (−18) 3.717 (−17)
F2 2.825 (−19) 6.407 (−16)
F3 2.827 (−19) 2.408 (−16)
F4 3.961 (−19) 2.572 (−18)
F5 −1.316 (−16) 1.251 (−15)
F6 7.971 (−16) 7.908 (−15)
F7 −4.110 (−14) 3.402 (−13)
F8 3.364 (−15) 2.690 (−14)
F9 1.256 (−13) 1.075 (−12)
F 2ν 4.991 (−24) 1.97 (−21)

two s.p. bases are not large and the behaviour of the two
curves is similar, but the NME obtained with the large ba-
sis are more stable. Generally, the results resemble to the
corresponding ones obtained with pnQRPA and RQRPA
in refs. [20,28]. However, the more instable behaviour of
the NME found in these references even at smaller values
of gpp is not so pronounced in our calculations. The reason
for such a strong dependence on gpp might be the domi-
nant contribution of the first 1+ state to the NME found
in our calculations. Indeed, we compared the calculation
of the NME by i) including the contribution of only the
first 1+ state in 106Ag (which is its g.s.) and ii) includ-
ing the contribution from the whole set of intermediate
1+ states and we found a rather small difference between
the values, at the same gpp = 0.9 ( i): 0.83, ii): 0.61). The
strong dependence on the model parameter and the non-
existence, up to now, of definite experimental half-lives for
these decays make the prediction of the NME very diffi-
cult. Thus, for the calculation of the half-lives gpp must
be fixed from other experimental quantities, for instance
from single β decays connected to the involved nuclei, as
was proposed already in [3]. We used the value gpp = 0.9
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Table 3. The nine NME which enter in the T 0ν
1/2 half-lives. The values of the first two rows represent the calculations of this

work performed with the smaller (s) and larger (l) basis, while those of the third row are taken from ref. [28].

MGT MF MGTω MFω MGTq MFq MT MP MR

(s) 5.99 −2.18 5.65 −2.01 4.26 −1.88 −0.67 2.46 7.45
(l) 5.73 −2.12 5.21 −1.94 4.15 −1.27 −0.62 2.34 7.06

[28] 3.34 −1.22 3.14 −1.09 2.35 −1.05 −0.38 1.43 4.10

Table 4. The coefficients Cxy calculated with the NME from table 2 and the integrated space phase factors from table 1. The
values in the first two rows of each line represent calculations of this work performed with (s) and (l) basis, respectively, while
those in the third row represent calculations of the authors of ref. [28].

Cmm Cmη Cmλ Cηη Cλλ Cηλ

β+β+ (s) 1.7 (−16) −5.1 (−14) −8.5 (−18) 7.2 (−12) 1.2 (−17) −5.2 (−18)
(l) 1.6 (−16) −4.7 (−14) −2.3 (−18) 6.9 (−12) 9.3 (−18) −6.2 (−18)
5.4 (−17) −1.6 (−14) −2.6 (−18) 2.4 (−12) 4.4 (−18) −1.6 (−18)

β+/EC (s) 2.5 (−15) 5.1 (−13) 1.5 (−14) 6.6 (−11) 3.5 (−14) −2.1 (−14)
(l) 2.3 (−15) 4.6 (−13) 1.3 (−14) 5.9 (−11) 2.9 (−14) −1.8 (−14)
7.7 (−16) 1.0 (−13) 4.5 (−15) 2.0 (−11) 1.1 (−14) −6.6 (−15)

which fits best the experimental log ft corresponding to
the (β+, EC) and β− decays of 106Ag to the 106Pd and
106Cd, respectively (g.s.-to-g.s. transitions).

Then, we calculated the half-lives for the three decay
modes with emission of neutrinos. For this we used the
phase space factors from ref. [33] calculated with relativis-
tic electron wave functions.

In table 1 we give our predicted half-lives for the decay
modes indicated together with the NME. For comparison,
we also give the results of other works. One can see that,
for the β+/EC decay mode, the predicted half-lives are not
far from the present experimental limits, which is encour-
aging for the continuation of the measurements to detect
such a decay.

Finally, we checked the Ikeda sum rule within SQRPA
and we found it is conserved with good accuracy. The
deviations from the exact fulfillment, both for the initial
and final nuclei, were within 2-3 percent. Here, we would
like to mention that our higher-order corrections to the
pnQRPA introduced by boson expansion of A and B op-
erators affect both the wave functions and density-type
operators. As was described in our previous papers (for
instance, [7] and [14]), the introduction of such corrections
does not affect much the structure of the beta transition
strengths (only the β+ transitions are a bit redistributed
as compared with their pnQRPA image). So, while the ISR
is fulfilled with good accuracy, also the Fermi beta-type
transitions remain mostly concentrate in the IAS.

3.2 Neutrinoless modes

We performed calculations of the NME for the 0νβ+β+

and 0νβ+/EC decay modes using the two s.p. bases.

The results are summarized in tables 2-4. In table 2
we give the phase factors used for computing the Cα

xy-
coefficients entering the formulae for the neutrinoless ββ
decay half-lives. They were taken from ref. [33]. In ta-
ble 3 we give the NME relevant for the neutrinoless decay
modes both for the mass mechanism and the right-handed
currents and for both the s.p. bases. For comparison, we
also give in the third row the values of the NME obtained
by the authors of ref. [28]. One can see that our values are
systematically larger by factors of 1.5-2 than those from
ref. [28]. One also observes that the NME obtained with
the two s.p. bases are close to each other, so the enlarge-
ment of the bases seems to have small influence on their
values.

In table 4 we give the values of the Cxy-coefficients
which enter into the neutrinoless decay modes half-lives.
The differences in the NME reflected in the values of these
coefficients are about a factor of 3-4 compared to the val-
ues obtained in [28]. The enhancement of the coefficients
Cλλ, Cmλ, Cηλ for the β+/EC decay mode is significant as
compared to the corresponding coefficients for the β+β+

decay mode (3-4 orders of magnitude), as was already dis-
cussed in [28]. This difference is coming mainly from the
enhancement of the F2 and F3 phase space factors in the
case of the β+/EC decay mode, which are dominant in
the calculation of the above-mentioned coefficients.

In order to see the relative importance of the mass
and RH-current mechanisms, one can calculate the mag-
nitude of the different terms appearing in the expression
of the neutrinoless half-lives (2.14). If we assume that
the 0νβ+β+ decay occurs only by the mass mechanism
and use the value of the neutrino mass parameter re-
ported recently in ref. [36] (i.e. 〈mν〉 ≈ 0.39 eV), one gets
T 0ν

1/2(β
+β+) ∼ 1028 y and T 0ν

1/2(β
+/EC) ∼ 7× 1026 y. The
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same order of magnitude is obtained with the following
RH parameters: i) for the β+β+ mode: 〈λ〉 ∼ 3 × 10−6,
〈η〉 ∼ 3.8×10−9 and ii) for the β+/EC mode: 〈λ〉 ∼ 2.1 ∼
10−7, 〈η〉 ∼ 4.8 × 10−9. So, from 0νβ+/EC experiments
one can extract more stringent limits for the λ-parameter
than from the 0νβ+β+ ones, if there exists experimental
evidence for the neutrinoless ββ decay. This is why, an ex-
perimental analysis of this decay mode can be of interest
for obtaining additional information about the dominant
mechanism governing the ββ decay (see also [28]).

4 Conclusions

We calculated the nuclear matrix elements and half-
lives for the neutrino-emitting modes β+β+, β+/EC and
EC/EC, and for neutrinoless β+β+ and β+/EC decay
modes with the SQRPA method and using two s.p. bases
in the case of 106Cd. Although this method has extensively
been used in β−β− decay calculations [23–25], it is now
for the first time here used for β+β+ decay calculations.

For the neutrino-emitting decay modes we found a
strong dependence of the NME on gpp, while the results
depend weakly on the size of the s.p. basis used. One of
the reasons for such a strong dependence on gpp might be
the dominant contribution of the 1+ state to the NME,
which was observed in our calculations. Fixing gpp such
that the corresponding experimental log ft for the single
β decay is reproduced best, and using the space phase
factors from ref. [33], we got half-lives for the β+β+ and
β+/EC decay of the order of 1021 y, which are not far from
the present experimental limits. This may be encouraging
for new planned experiments. Also, checking the ISM we
found deviations from the exact fulfillment, for both the
initial and final nuclei, which are within a few percent.

Further, we performed calculations of the NME for
the 0νβ+β+ and 0νβ+/EC decay modes using two s.p.
bases for both the mass and the RH-current mechanisms.
The values we obtained are slightly larger, by factors
of 1.5-2, than those from [28] and they do not depend
much on the s.p. basis used. Then, we computed the Cxy-
coefficients entering the half-life formulae and confirmed
the enhancement of Cλλ, Cmλ, Cηλ in the case of the
β+/EC decay mode as compared with the correspond-
ing coefficients for the β+β+ decay mode by 3-4 orders of
magnitude [28]. Using the recently reported value for the
neutrino mass parameter (i.e. 〈mν〉 ≈ 0.39 eV [36]), we
got T 0ν

1/2(β
+β+) ∼ 1028 y and T 0ν

1/2(β
+/EC) ∼ 7× 1026 y.

With these values we extracted the RH parameters from
our calculations and found, in the case of the 0νβ/EC
decay, a value for the λ-parameter which is about one
order of magnitude smaller than the one extracted from
0νβ+β+. This difference comes from the enhancement of
the Cm,η,λλ-coefficients and demonstrates the larger sensi-
tivity of the neutrinoless mixed mode experiments on the
RH-current contributions to the β+β+ decay.

One of the authors (S.S.) would like to thank the Max Planck
Institut für Kernphysik for the hospitality extended to him
during his stay in Heidelberg.

Appendix A.

For the overlap factors which appear in the expression of
the NME we used the following expressions:

〈1k1 |1k′
1
〉 =

∑
jpjn

(
X1

k1
(jpjn)X̄1

k′
1
(jpjn)

−Y 1
k1
(jpjn)Ȳ 1

k′
1
(jpjn)

)
, (A.1)

〈(1k12k2)1|(1k′
1
2k′

2
)1〉 =∑

jpjn

(
X1

k1
(jpjn)X̄1

k′
1
(jpjn)− Y 1

k1
(jpjn)Ȳ 1

k′
1
(jpjn

)

×
∑
jτ j′τ

(
X2

k2
(jτ j′τ )X̄

2
k′
2
(jτ j′τ )−Y 2

k2
(jτ j′τ )Ȳ

2
k′
2
(jτ j′τ )

)
, (A.2)

where τ = p or n.
The nine NME which appear in (2.15) are:

Mα =
∑

〈0+
f ||τ+

1 τ+
2 Oα

12||0+
i 〉 , (A.3)

where the two-body transition operators Oα
12 have the fol-

lowing definitions:

OGT
12 = σ1σ2Hm(r) , OGTω

12 = σ1σ2Hω(r) ,

OGTq
12 = σ1σ2

r

R
Hq(r) , OF

12 = Hm(r)
(
gV
gA

)2

,

OFω
12 = Hω(r)

(
gV
gA

)2

, OFq
12 =

r

R
Hq(r)

(
gV
gA

)2

,

OT
12 =

[
(σ1r̂) (σ2r̂)− 1

3
σ1σ2

]
r

R
Hq(r) ,

OP
12 = i (σ1 − σ2)

(
r̂ × r+

R

)
Hq(r)

(
gV
gA

)
,

OR
12 = σ1σ2Hq(r)

µβ

3

(
gV
gA

)
, (A.4)

where r = r1 − r2, r = |r|, r̂ = r/r, r+ = (r1 + r2)/2 and
R is the nuclear radius which is introduced to make the
matrix elements dimensionless. The neutrino potentials
defined by integrals over the neutrino momentum are also
dimensionless and have the following expressions [10]:

Hm(r) =
2R
π

1
r

∫ ∞

0

q sin(qr)
ω(ω + Ē)

dq ,

Hω(r) =
2R
π

1
r

∫ ∞

0

q sin(qr)
ω(ω + Ē)2

dq ,

Hq(r) = −R
d
dr

Hm(r) ,

HR(r) = − R

M

d2

dr2
Hm(r) , (A.5)

were ω =
√

q2 +m2
ν and Ē is the average energy of inter-

mediate nuclear states. The two-body short-range corre-
lations between nucleons are taken into account by mul-
tiplying the two-particle wave function by the correlation
function:

1− f(r) = 1− e−ar2
(1− br2) (A.6)
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with a = 1.1 fm−2 and b = 0.68 fm−2. The finite nucleon
size effects are introduced by the monopole form factors
in momentum space [37]:

gV/A → gV/A

(
Λ2

Λ2 + q2

)2

(A.7)

with Λ = 850MeV.
The NME for the neutrinoless ββ decay can be ex-

pressed as a sum of products of one-body transition densi-
ties and transition matrix elements for two-particle states:

Ma =
∑

p1,p2,n1,n2,J ′,J,π

Z(p1p2, n1n2;J ′Jπ)

×〈p1p2;J ′|τ+
1 τ+

2 Oa
12|n1n2;J ′〉 , (A.8)

where in our case

Z(p1p2, n1n2;J ′, 1+) =

3(−)p2+n1+J ′+J(2J ′ + 1)W (p2p1n2n1;J ′1)

×〈0+
f ||[˜c†p2 c̃n2 ]1||1+

k 〉〈1+
k |1+

k′〉〈1+
k′ ||[c†p1

c̃n1 ]1||0+
i 〉. (A.9)

The one-body densities of the single β-type operators
are calculated within our model space (2.1) and their ex-
pressions are similar to the (2.10), (2.11) ones.
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